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Abstract. This paper is a review of recent results on a variational model in the context
of the gradient theory for fluid-fluid phase transitions with small scale heterogeneities. We
present a Γ−convergence result that identifies an anisotropic limiting surface energy, and
investigate some of its properties.

1. Introduction

The study of pattern formation in equilibrium configurations phase separation is an ex-
tremely complex phenomenon which has attracted the interest of many mathematicians. In
the case of homogeneous substances, variational models such as the Modica-Mortical func-
tional (see [28, 29, 32]) and its vectorial (see [24, 4]), anisotropic (see [5, 23]), and non-
isothermal variants (see [13]) have been proven capable of describing the stable configurations
observed in experiments. For composite materials, it has been realized experimentally (see
[6]) that the microscopic scale heterogeneities can affect the macroscopic equilibrium config-
urations as well as the dynamics of interfaces. Therefore, physics requires the mathematical
models to include these microscopic effects.

In this paper, we consider a variational approach to the study of phase transitions in
heterogeneous media in the case where the scale of the heterogeneities is the same as those
at which the phase transitions phenomenon takes place. In particular, we study a Modica-
Mortola like phase field model where the heterogeneities are modeled by oscillations in the
potential. To be precise, let d,N ≥ 1, fix an open bounded set Ω ⊂ RN with Lipschitz
boundary and, for ε > 0, define the energy Fε : H1(Ω;Rd)→ [0,∞] as

Fε(u) :=

ˆ
Ω

[
1

ε
W
(x
ε
, u(x)

)
+ ε|∇u(x)|2

]
dx . (1)

Here u ∈ H1(Ω;Rd) represents the phase field variable. The assumptions that the double well
potential W : RN × Rd → [0,∞) has to satisfy differ according to the questions addressed,
and therefore we will present them in each section.

We are interested in understanding what is the sharp interface limit as the parameter ε→ 0.
Local minimizers of this limit under a mass constraint will describe equilibrium configurations.

Previous investigations on models related to the one considered in this paper have been
undertaken by several authors. In particular, in [2] (see also [1]) Ansini, Braides and Chiadò
Piat considered the case where oscillations are in the forcing term f(∇u) (which generalizes
|∇u|2), while in [17] and [18] by Dirr, Lucia and Novaga investigated the interaction of the
fluid with a periodic mean zero external field. Moreover, in [7], Braides and Zeppieri studied
the Γ expansion of the scalar one dimensional case, allowing the zeros of the potential to jump
in a specific way. Finally, the case of higher order derivatives is examined in [25] by Francfort
and Müller.
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2. Phase field model

In this section we present the results obtained in [11, 12, 9, 10].

2.1. Sharp interface limit. In order to study the sharp interface limit of the energy (1), we
assume that the double well potential W : RN×Rd → [0,∞) satisfies the following properties:

(A1) For all p ∈ Rd, x 7→W (x, p) is Q-periodic, where Q := (−1/2, 1/2)N ;
(A2) W is a Carathéodory function, i.e.,

(i) for all p ∈ Rd, the function x 7→W (x, p) is measurable,
(ii) for a.e. x ∈ Q, the function p 7→W (x, p) is continuous;

(A3) There exist z1, z2 ∈ Rd such that, for a.e. x ∈ Q, W (x, p) = 0 if and only if p ∈ {z1, z2},
(A4) There exists a continuous function W̃ : Rd → [0,∞), vanishing only at p = z1 and at

p = z2, such that W̃ (p) ≤W (x, p) for a.e. x ∈ Q;
(A5) There exist C > 0 and q ≥ 2 such that

1

C
|p|q − C ≤W (x, p) ≤ C(1 + |p|q)

for a.e. x ∈ Q and all p ∈ Rd.

Remark 2.1. The assumption (A2)(i) above is the strongest we can ask when modeling
periodic inclusions of different materials. Indeed, when each cell Q is composed of k different
inclusions of materials each in a region E1, . . . , Ek ⊂ Q, the potential W takes the form

W (x, p) :=

k∑
i=1

Wi(p)χEi(x) ,

where Wi : Rd → [0,∞) are continuous functions with quadratic growth at infinity and such
that Wi(p) = 0 if and only if p ∈ {z1, z2}. Therefore the function W in the first variable is,
in general, only measurable. Moreover, the continuity of W in the second variable, as well
as the non degeneracy of the potential (A4) and the growth at infinity in the second variable
(A5) are compatible with what is usually assumed in the physical literature.

The limiting functional will be an interfacial energy whose energy density is defined via a
cell formula as follows.

Definition 2.2. For ν ∈ SN−1, let u0,ν : RN → Rd be the function

u0,ν(x) :=

{
z1 if x · ν ≤ 0 ,
z2 if x · ν > 0 ,

and denote by Qν the family of cubes centered at the origin with unit length sides and having
two faces orthogonal to ν. For T > 0, Qν ∈ Qν , and ρ ∈ C∞c (B(0, 1)) with

´
RN ρ(x)dx = 1,

where B(0, 1) is the unit ball in RN , consider the class of functions

C(ρ,Qν , T ) :=
{
u ∈ H1(TQν ;Rd) : u = u0,ν ∗ ρ on ∂(TQν)

}
.

We define the function σ : SN−1 → [0,∞) as

σ(ν) := lim
T→∞

g(ν, T ) ,

where, for each ν ∈ SN−1 and T > 0,

g(ν, T ) :=
1

TN−1
inf
{ˆ

TQν

[
W (y, u(y)) + |∇u|2

]
dy : Qν ∈ Qν , u ∈ C(ρ,Qν , T )

}
.
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Remark 2.3. It was observed by Müller in [30] that, in the case the potential W is vectorial,
in the definition of the cell formula it is not enough to take the minimum only on a single
cell, but to consider the sequence of minima taken on larger and larger cells TQν . In case
the potential W is scalar, it is possible to reduce to a single cell problem with W replaced by
W ∗∗ (see Lemma 4.1 and the remark after that, in [30]).

The main properties of the function σ : SN−1 → [0,∞) that are relevant for our study are
collected in the following result. For the proof, see [11, Lemma 4.1, Remark 4.2, Lemma 4.3,
Proposition 4.4].

Lemma 2.4. The followings hold:

(i) For every ν ∈ SN−1, the quantity σ(ν) is well defined and finite;
(ii) The value of σ(ν) does not depend on the choice of the mollifier ρ;
(iii) The map ν 7→ σ(ν) is upper semi-continuous on SN−1;
(iv) The infimum in the definition of g(ν, T ) may be taken with respect to one fixed cube

Qν ∈ Qν . Namely, given ν ∈ SN−1, for any Qν ∈ Qν it holds

σ(ν) = lim
T→∞

1

TN−1
inf
{ˆ

TQν

[
W (y, u(y)) + |∇u|2

]
dy : u ∈ C(ρ,Qν , T )

}
.

We are now in position to introduce the limiting functional.

Definition 2.5. Define the functional F0 : L1(Ω;Rd)→ [0,∞] as

F0(u) :=


ˆ
∂∗A

σ(νA(x)) dHN−1(x) if u ∈ BV (Ω; {z1, z2}),

+∞ else,

(2)

where A := {u = z1} and νA(x) denotes the measure theoretic external unit normal to the
reduced boundary ∂∗A of A at the point x.

Remark 2.6. Note that by Lemma 2.4(i), it holds F0(u) < ∞ for all u ∈ BV (Ω; {z1, z2}),
and, by Lemma 2.4(ii), the definition does not depend on the choice of the mollifier ρ.

Theorem 2.7. Let {εn}n∈N ⊂ (0, 1) be a sequence such that εn → 0+ as n → ∞. Assume
that (A1), (A2), (A3), (A4), and (A5) hold.

(i) If {un}n∈N ⊂ H1(Ω;Rd) is such that

sup
n∈N
Fεn(un) < +∞

then, up to a subsequence (not relabeled), un → u in L1(Ω;Rd), for some function
u ∈ BV (Ω; {z1, z2}).

(ii) The functional F0 is the Γ-limit in the L1 topology of the family of functionals {Fεn}n∈N.

Remark 2.8. The most interesting aspect of the above result is the anisotropic character
of the limiting functional. This might come as a surprise since the initial functional Fε is
isotropic, but there is a hidden anisotropy: the possible mismatch between the directions of
periodicity of W and the local orientation of the limiting interface ∂∗A (see Figure 1).

We would like to comment on the main ideas behind the proof of Theorem 2.7. Compactness
follows by using classical arguments (see [24]) since the non degeneracy assumption (A4) allows
to reduce to the case of a non oscillating potential

Fεn(un) ≥
ˆ

Ω

[
1

εn
W̃ (un(x)) + εn|∇nu(x)|2

]
dx.
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Figure 1. The source of anistropy for the limiting functional. If νA(x) is
oriented with a direction of periodicity of W , the (local) recovery sequence
would simply be obtained by using a rescaled version of the recovery sequence
for σ(νA(x)) in each yellow cube and by setting z1 in the green region, and z2 in
the pink one. If, instead, νA(x) is not oriented with a direction of periodicity
of W , the above procedure does not guarantee that we recover the desired
energy, since the energy of such functions is not the sum of the energy of each
cube.

The liminf inequality (see [11, Proposition 6.1]) is based on a standard blow-up argument
(see [22]) at a point x0 ∈ ∂∗A to reduce to the case where the limiting function is u0,ν and
the domain is Qν ∈ Qν , where ν = νA(x0). Then, a technical lemma (see [11, Lemma 3.1])
in the spirit of De Giorgi’s slicing method (see [15]) allows to modify the given sequence
{un}n∈N ⊂ H1(Qν ;Rd) into a new sequence {vn}n∈N ⊂ H1(Qν ;Rd) with vn → u0,ν in L1,
such that

lim inf
n→∞

Fεn(un) ≥ lim sup
n→∞

Fεn(vn),

and vn = ρn ∗u0,ν on ∂Qν , where ρn(x) := ε−Nn ρ(x/εn). The required inequality then follows
by using a change of variable, and the definition of σ(ν) together with Lemma 2.4(iv).

The main challenges are related to the proof of the limsup inequality (see [11, Proposition
7.1]) for a function u ∈ BV (Ω, {a, b}), which requires new geometric arguments. The idea is
first to prove the result for functions u ∈ BV (Ω; {a, b}) whose outer normals to the reduce
boundary have rational coordinates, and then use the density of this class of functions in
BV (Ω; {a, b}) together with Reshetnyak’s upper semi-continuity theorem (by Lemma 2.4(iii)
the function ν 7→ σ(ν) is upper semi-continuous on SN−1) to conclude in the general case.
In order to tackle the first step, we use a general strategy developed by De Giorgi, which
can be seen as a sort of reverse blow-up argument: we consider the localized Γ-limsup as a
map on Borel sets and we prove that it is indeed a Radon measure λ. This is done by using
a simplification of the De Giorgi-Letta coincidence criterion for Borel measures (see [16]) by
Dal Maso, Fonseca, and Leoni (see [14, Corollary 5.2]). Next, we show that λ is absolutely
continuous with respect to the measure µ := HN−1 ¬ ∂∗A. The result follows by proving that
the density of λ with respect to µ at a point x0 ∈ ∂∗A is bounded above by σ(νA(x0)). It is
in this step that we exploit the fact that νA(x0) ∈ SN−1 ∩ QN−1: indeed, by using the fact
that W is periodic (with a different period) also as a function on any cube Q whose faces are
normal to directions in SN−1 ∩ QN−1, we can estimate the energy of a configuration similar
to that in Figure 1 on the left.
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Remark 2.9. The strategy used to prove the above result is robust enough to be easily
adapted to prove the analogous result when a mass constraint is enforced. Moreover, as a
consequence of the Γ-limit result, we get that the function σ : SN−1 → [0,∞) is continuous,
and its 1-homogeneous extension is convex.

The upshot of the foregoing result is that microscopic heterogeneities during phase transi-
tions result in anisotropic surface tensions at the macroscopic level. Natural follow-up ques-
tions are:

(1) beyond convexity, what can one say about the effective surface tension σ? What
functions σ are attainable as effective surface tensions of phase transitions in periodic
media?

(2) considering the gradient flow dynamics of an energy as in (1), what are the ε → 0+

asymptotics ? Does one indeed obtain a suitable weak formulation of anisotropic mean
curvature flow, by analogy with the isotropic setting?

In [9] we provide partial answers to the first question above, by relating it to a geometry
problem. In [10], we address dynamics. In the rest of this survey we will summarize the
results of [9], and a similar review of the results on dynamics will appear elsewhere [21].

In the sequel, we assume the product form of the potential W :

W (y, ξ) := a(y)(1− u2)2, y ∈ RN , u ∈ R. (3)

Here a : RN → R is Q-periodic, and non-degenerate in the sense that

θ 6 a(y) 6 Θ, y ∈ RN , (4)

for some 0 < θ < Θ < ∞. Note that assumptions (A1)-(A5) of Section 2.1 are satisfied with

z1 = −1, z2 = 1 and W̃ = W . The fact that u is scalar-valued is crucial for a number of the
results proven in [9, 10] since we use arguments based on the maximum principle. However,
this isn’t true of all the results, and we will indicate this as appropriate.

2.2. Bounds on the Anisotropic Surface Tension σ.

2.2.1. A Geometric Framework. Consider the periodic Riemannian metric on RN that is con-
formal to the Euclidean one, defined as follows: given points x, y ∈ RN , we set

d√a(x, y) := inf
γ

ˆ 1

0

√
a(γ(t))|γ̇(t)| dt,

where the infimum is taken over Lipschitz continuous curves γ : [0, 1] → RN such that
γ(0) = x, γ(1) = y. It is easily seen that the formula defining d√a is independent of the
parameterization of the competitor curves γ. Furthermore, standard arguments via the Hopf-
Rinow theorem imply that RN with the metric d√a is a complete metric space. Equivalently,

geodesically complete: given any pair of points x, y ∈ RN there exists a distance-minimizing
geodesic joining them, whose length is equal to d√a(x, y) (see [32] for details). Now fix a

direction ν ∈ SN−1, and consider the plane Σν through the origin with normal ν,

Σν := {y ∈ RN : y · ν = 0}.

Next, define the signed distance function in the d√a−metric to the plane Σν , via

hν(y) := sgn(y · ν) inf
z∈Σν

d√a(y, z),
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where the signum function is defined as

sgn(t) :=

{
1 t > 0,
−1 t < 0.

It is easily shown (see [9, Lemma 2.2]) that hν is Lipschitz continuous, with

|∇hν(y)| =
√
a(y) at a.e. y ∈ RN . (5)

These observations, together with (4), yield
√
θ(y · ν) 6 hν(y) 6

√
Θ(y · ν), y · ν > 0,

√
Θ(y · ν) 6 hν(y) 6

√
θ(y · ν), y · ν < 0.

(6)

In order to explain the relationship that the d√a−metric bears with the anisotropic surface
tension σ, it is useful to revisit the case a ≡ 1, and the celebrated Modica-Mortola example.
In this case,

σ(ν) = lim
T→∞

1

TN−1
inf

{ˆ
TQν

[
W (u(y)) + |∇u|2

]
: u ∈ C(ρ,Qν , T )

}
.

Elementary algebraic manipulations that effectively boil down to completing the square, yield
that the infimum above is asymptotically reached by the one-dimensional profile satisfying
equipartition of energy. This entails, in the model case of (3), that the optimal cost is achieved
by the choice u(y) = q ◦ (y · ν), where q := tanh . The associated cost is given by

σ(ν) ≡ σ0 :=

ˆ ∞
−∞

[
W (q ◦ (y · ν)) + |∇(q ◦ (y · ν))|2

]
d(y · ν) = 2

ˆ 1

−1

√
W (s) ds. (7)

To make the connection to the
√
a− metric, we begin by noting that when a ≡ 1 we have

hν(y) ≡ y · ν. Our main motivation, then, is to obtain a similar formula that is exact when
a is non-constant, or at least supplies reasonable bounds for the non-constant ν 7→ σ(ν). We
do so by encoding the heterogeneous effects of a into the geometry of the underlying space,
i.e., by working in the

√
a-metric. We turn to making these comments precise.

Fix ν ∈ SN−1. Then, the cell formula defining σ(ν), proven in [11, 12] and specialized to
our setting, reads (see Lemma 2.4 (iv))

σ(ν) = lim
T→∞

1

TN−1
inf
{ˆ

TQν

[
a(y)W (u) + |∇u|2

]
dy : u ∈ H1(TQν),

u = ρ ∗ u0,ν on ∂(TQν)
}
.

Here, we recall that u0,ν(y) := sgn(y · ν) and ρ is any standard smooth normalized mollifier
(it is shown in Lemma 2.4(ii) that σ(ν) is independent of this choice). A preliminary step is
to observe, by De Giorgi’s slicing method (see [9, Lemma A.1]) that, equivalently,

σ(ν) = lim
T→∞

1

TN−1
inf
{ˆ

TQν

[
a(y)W (u) + |∇u|2

]
dy : u ∈ H1(TQν),

u = q ◦ hν along ∂(TQν)
}
. (8)

For each fixed T � 1, by the Direct Method of the Calculus of Variations, the variational
problem inside the limit has a minimizer. Such a minimizer is, perhaps, not unique, but for
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each T we select one, and call it uT . We discuss various properties of uT below in Section
2.2.2. In light of (8), it is clear by energy comparison, that

σ(ν) 6 lim inf
T→∞

1

TN−1

ˆ
TQν

[a(y)W (q ◦ hν) + |∇(q ◦ hν)|2] dy.

Towards proving the opposite bound, we introduce the function φ : R→ R, by

φ(z) := 2

ˆ z

0

√
W (s) ds.

This function plays a fundamental role in the Modica-Mortola analysis corresponding to a ≡ 1.
For any T � 1, using (5) and completing squares, we find

1

TN−1

ˆ
TQν

[
a(y)W (uT ) + |∇uT |2

]
dy

=
2

TN−1

ˆ
TQν

∇hν ·
√
W (uT )∇uT dy +

1

TN−1

ˆ
TQν

∣∣∣∇uT −√W (uT )∇hν
∣∣∣2

≥ 1

TN−1

ˆ
TQν

∇hν · ∇(φ(uT )) dy

=
1

TN−1

ˆ
TQν

∇hν · ∇(φ(q ◦ hν)) dy +
1

TN−1

ˆ
TQν

∇hν · ∇ (φ(uT )− φ(q ◦ hν)) dy

=
1

TN−1

ˆ
TQν

|∇hν |2φ′(q ◦ hν)q′(hν) dy

+
1

TN−1

ˆ
TQν

∇hν · ∇ (φ(uT )− φ(q ◦ hν)) dy

=
1

TN−1

ˆ
TQν

2a(y)W (q ◦ hν) dy +
1

TN−1

ˆ
TQν

∇hν · ∇ (φ(uT )− φ(q ◦ hν)) dy

=
1

TN−1

ˆ
TQν

[
a(y)W (q ◦ hν) + |∇(q ◦ hν)|2

]
dy

+
1

TN−1

ˆ
TQν

∇hν · ∇ (φ(uT )− φ(q ◦ hν)) dy,

(9)

where in the last line we used the fact that the function q◦hν achieves equipartition of energy.
Indeed, by the definition of hν , we have

|∇(q ◦ hν)(y)|2 = (q′(hν(y))2|∇hν(y)|2 = a(y)W (q(hν(y)).

Defining

λ(ν) := lim sup
T→∞

1

TN−1

ˆ
TQν

[
a(y)W (q ◦ hν) + |∇(q ◦ hν)|2

]
dy,

λ(ν) := lim inf
T→∞

1

TN−1

ˆ
TQν

[
a(y)W (q ◦ hν) + |∇(q ◦ hν)|2

]
dy,

provided we can control the error term

lim sup
T→∞

∣∣∣∣ 1

TN−1

ˆ
TQν

∇hν(y) · ∇ (φ(uT )− φ(q ◦ hν)) dy

∣∣∣∣ := λ0(ν),

we observe that the test function q ◦hν gives two-sided bounds on σ(ν). Controlling the term
λ0 is complicated by the fact that it couples a product of weakly converging sequences (on
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expanding domains). Indeed, rescaling using y = Tx in order to work in a fixed domain Qν ,
the two weakly converging factors making up the above product are:

(1) the oscillatory factor: by (5) and (4), the term {∇hν(T ·)}T , which is bounded in L∞,
converges weakly-*; and

(2) the concentration factor: the terms ∇φ(uT (T ·)) and ∇φ(q ◦hν(T ·) converge weakly-*
to measures (see Section 2.2.2 for precise statements).

In particular, as one of the factors converges to a measure, standard tools such as compen-
sated compactness, used traditionally to pass to the limit in products of weakly converging
sequences, are unavailable, and we must control this term “by hand”. In Section 2.2.2 below,
we obtain fine information on the concentration effects, in Section 2.2.3 we deduce partial
results concerning the oscillatory effects. Finally, we put these together in Section 2.2.4 where
we obtain bounds on λ0(ν).

2.2.2. Structure of Minimizers of the Cell Formula. For fixed T � 1, let uT ∈ C2(TQν) (by
elliptic regularity) a minimizer of the energyˆ

TQν

[
a(y)W (u) + |∇u|2

]
dy,

among competitors that equal q ◦ hν along the boundary ∂(TQν), and set

vT (x) := uT (Tx), x ∈ Qν .

Lemma 2.10. The functions vT converge in L1 to u0,ν : Qν → {±1}.

The proof of this lemma (see [9, Lemma 3.1]) is a nice application of the convexity of the
one-homogeneous extension of σ (see Remark 2.9), using Jensen’s inequality. The argument,
without any changes, holds in the complete generality of the setting of [11] on the potential
(vectorial, coupled, measurable dependence on the fast variable), and does not rely on the
specific structure requested in (3). Combining Lemma 2.10 with the results of Caffarelli-
Cordoba [8], we find that the level sets of vT , for T sufficiently large, converge uniformly to
Σν ∩Qν .

Restricting ourselves to the scalar setting of (3), an argument using the strong maximum
principle yields that for all T <∞, we have

−1 < uT (y) < 1,

(see [9, Lemma 3.2]) . In particular, wT := 1√
2

tanh−1 uT is well-defined, finite, and smooth

in TQν . Further, the function wT verifies the elliptic boundary value problem
∆wT = 4√

2
tanhwT

(
|∇wT |2 − a(y)

)
, y ∈ TQν ,

wT (y) = hν(y) y ∈ ∂(TQν).

Proposition 2.11. Let wT be as above, and let T � 1. There exist universal constants α0

and η0 > 0 such that the following holds:
√

Θ(y · ν)− α0 ≥ wT (y) ≥
√
θ(y · ν)− η0 if wT (y) > 0,

−
√
θ(y · ν) + η0 ≥ wT (y) ≥ −

√
Θ(y · ν) + α0 if wT (y) < 0.

(10)

Proposition 2.11 asserts that, up to universal constants, the function wT satisfies exactly
the same growth rates as the function hν , see (6). To prove Proposition 2.11, consider, for
instance, the lower bound in the first of the two inequalities in (10). The main observation
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is that the function y 7→ ζT (y) := y·ν
wT (y)+η0

satisfies an elliptic PDE that verifies a maximum

principle. The remaining inequalities follow from similar arguments, and we refer the reader
to [9, Proposition 3.4] for details.

2.2.3. The Planar Metric Problem. Our results on the distance function hν concern its large-
scale behavior. The bounds on σ that we discuss in Section 2.2.4 below, depend solely on
the large-scale behavior of the distance functions hν for which one can readily invoke efficient
numerical algorithms, for example fast marching and sweeping methods [31].

A natural question concerns the large-scale homogenized behavior of hν , i.e., characterize
the limit

lim
T→∞

hν(Ty)

T
, y ∈ RN ,

in a suitable topology of functions. We fully resolve this question (see also [3]) by character-
izing uniform limits of the function h(T ·)/T.

Theorem 2.12. Let ν ∈ SN−1. Then, there exists a real number c(ν) ∈ [
√
θ,
√

Θ], for each
K ⊆ RN compact, we have

lim
T→∞

sup
y∈K

∣∣∣∣ 1

T
hν(Ty)− c(ν)(y · ν)

∣∣∣∣ = 0.

Moreover, for all compact subsets L of RN \ Σν , we have

lim
T→∞

sup
y∈L

∣∣∣∣ 1

T (y · ν)
hν(Ty)− c(ν)

∣∣∣∣ = 0.

We can interpret Theorem 2.12 as a homogenization result for the Eikonal equation in
half-spaces. Indeed, it is well known (see for example [27]) that for each fixed ν ∈ SN−1, the
functions km(y) := T−1

m hν(Tm(y)) and `(y) := c(ν)(y · ν) are the unique viscosity solutions to{
|∇km| =

√
a(Tmy) in {y · ν ≥ 0},

km = 0 on Σν ,
and

{
|∇`| = c(ν) in {y · ν ≥ 0},
` = 0 on Σν .

(11)

In fact, small modifications of our proofs permit us to prove almost periodic homogenization
theorems for convex hamiltonians with Bohr almost periodic dependence on the fast variable,
and Lipschitz continuous dependence on the slow variable (see [9, Theorem 1.4] for a precise
statement). Theorem 2.12 shows that viscosity solutions of the PDEs on the left side of
converge locally uniformly to the viscosity solution of the PDE on the right. A viscous and
stochastic version of these equations (termed the “planar metric problem”) was introduced
by Armstrong and Cardaliaguet [3] and studied by others [19, 20] in the context of stochastic
homogenization of geometric flows.

2.2.4. Bounds on the Anisotropic Surface Tension. As explained in the string of inequalities
(9), the function q ◦ hν provides tight upper and lower bounds for the effective anisotropy
σ(ν). To be precise,

Theorem 2.13. Let σ : SN−1 → [0,∞) be the anisotropic surface energy as in (2.2). Let
q : R→ R be defined by

q(z) := tanh(z), z ∈ R.
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Figure 2. The situation when phase transitions and homogenization act at
possibly different scales.

For ν ∈ SN−1, define

λ(ν) := lim inf
T→∞

1

TN−1

ˆ
TQν

[
a(y)W (q ◦ hν) + |∇(q ◦ hν)|2

]
dy,

λ(ν) := lim sup
T→∞

1

TN−1

ˆ
TQν

[
a(y)W (q ◦ hν) + |∇(q ◦ hν)|2

]
dy.

There exist Λ0 > 0 and λ0 : SN−1 → [0,Λ0] such that

λ(ν)− λ0(ν) 6 σ(ν) 6 λ(ν).

We do not expect these to agree when ν ∈ QN ∩ SN−1 owing to finite-size effects: in such
directions, hν is periodic, and the problem is restricted to an infinite strip, rather than all of
space (see [9, Lemma 2.3]). However, generically, i.e., when ν is an irrational direction, we
conjecture that λ0(ν) = 0, so that λ(ν) = λ(ν).

2.3. Open problems. The studies presented above are a good source of interesting open
problems. Here we list some of them.

2.3.1. Different scales. For ε, δ > 0, consider the energy

Fε,δ(u) :=

ˆ
Ω

[
1

ε
W
(x
δ
, u(x)

)
+ ε|∇u(x)|2

]
dx.

defined for functions u ∈ H1(Ω;Rd). Here the parameter ε is related to the phase transition
process, while δ describes the scale of periodicity. In the functional (1) we considered the
case ε = δ, namely when the two phenomena act at the same scale, but it is interesting to
understand what happens when one scale is dominant with respect to the other. Heuristically,
we expect the limiting energy to be the same in the green and in the blue region (see Figure 2).
In particular, when ε� δ we expect the limiting functional FP0 to be the homogenization of
a surface energy functional, while in the other case, namely when δ � ε, we expect to obtain
the limit FH0 of a classical Modica-Mortola functional whose potential is the homogenization
of the original potential W .

This latter situation was investigated in [26] under the additional assumption that the
positive infinitesimal sequences {εn}n∈N and {δn}n∈N satisfy

lim
n→∞

ε
3/2
n

δn
= +∞, (12)
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and by assuming the potential W to be locally Lipschitz in the second variable, uniformly in
the first one. In particular, it was proved that the limiting functional is

FH0 (u) :=


KHP({u = z1}; Ω) if u ∈ BV (Ω; {z1, z2}),

+∞ otherwise,

where P({u = z1}; Ω) denotes the perimeter of the set {u = z1} in Ω, and the constant KH

is given by

KH := 2 inf

{ˆ 1

0

√
WH(γ(s))|γ′(s)|ds : γ ∈ C1([0, 1];Rd), γ(0) = z1, γ(1) = z2

}
,

with the homogenized potential WH : Rd → [0,+∞) given by WH(p) :=
´
QW (y, p) dy.

Some questions are still open: is this true also when δ � ε but without the extra assumption
(12)? And what about the other regime?

2.3.2. Sharpness of Bounds and Inverse Homogenization. Various questions remain open from
our discussion in 2.2. Our main contribution in that section was to relate the anisotropic
surface tension σ to a purely geometric problem that had no concentration effects. Related
to these bounds, we offer two open questions:

(1) Examine the tightness of the bounds in Theorem 2.13, and closely related,
(2) what does the set of effective anisotropies σ look like? In other words, which σ :

SN−1 → (0,∞) with convex one-homogeneous extensions arise as a result of the ho-
mogenization procedure in [9]? Our bounds offer an approach to approximately solving
this inverse homogenization question.
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